Request A Quote
Contact us to discuss how we can help you achieve your research goals
Research Services

Untargeted Metabolomics

Untargeted metabolomics enables the unbiased detection of dynamic changes in most small molecule metabolites within an organism in response to external stimuli. By leveraging Liquid Chromatography-Mass Spectrometry (LC-MS), researchers can gain comprehensive insights into biological systems influenced by environmental, genetic ortherapeutic variations.

At Novogene, our comprehensive untargeted metabolomics services offer the latest state-of-the-art LC-MS technologies together with cutting-edge bioinformatics analyses to deliver high-quality metabolomic data to support your research.

Applications:

Untargeted metabolomics plays a vital role in agricultural, clinical, and medical research by offering insights into plant and soil metabolite profiles, stress responses, and environmental interactions, while also facilitating the in-depth study of metabolic changes related to diseases, drug responses, and personalized medicine.

  • Stress Resistance Research
  • Crop Improvement & Breeding
  • Plant Growth, Soil Health & Microbial Interactions
  • Food Science Research
  • Biomarker Screening
  • Pathological Mechanisms

Advantages and Features of Novogene's Untargeted Metabolomics Services

  • Ultra-high Resolution and Sensitivity: Powered by the Q Exactive HF-X mass spectrometry platform, Novogene delivers exceptional data quality for precise and reliable results.
  • High Quality Database: A high-quality secondary spectral database including in-house standard database(15,000+ standards) and in-house secondary spectrum library, ensuring comprehensive and high-quality search results.
  • Rigorous Quality Control: QC indicator for monitoring all aspects of experimentation from sample preparation to data collection.

Sample Requirements for Biomedical Metabolomics Sample

Sample Type Sample Recommended Sample Biological Replicate
Liquid Plasma, Serum, Hemolymph, Whole Blood, Milk, Egg White 100 μL Human≥30, Animal≥8, Plant≥3
Cerebrospinal Fluid, Interstitial Fluid, Uterine Fluid, Pancreatic Juice, Bile, Pleural Effusion, Follicular Fluid, Postmortem Fluid, Tissue Fluid, Culture Medium (liquid), Culture Supernatant, Tears, Aqueous Humor, Digestive Juices,Bone Marrow (liquid) 100 μL
Seminal Plasma, Amniotic Fluid, Prostatic Fluid, Rumen Fluid, Respiratory Condensate, Gastric Lavage Fluid, Broncho-alveolar Lavage Fluid (BALF), Urine, Sweat, Saliva, Sputum 500 μL
Tissue Animal Tissues, Placenta, Blood Clot, Mycelium, Nematode, Zebrafish (whole fish), Bone Marrow (solid), Nail 100 mg
Whole Insect Body, Wings (of insects), Pupa, Eggs, Large Fungi (mushroom types), Large Algae (red algae), Large Amount of Mycelium/Mycelial Balls, Cartilage, Bone (solid) 500 mg
Zebrafish Organs, Insect Organs, Whole Microinsect Body (e.g., Drosophila) 20 units
Solid Feces, Intestinal Contents, Lyophilized Fecal Powder 200 mg
Milk Powder, Microbial Fermentation Product (solid), Culture Medium (solid), Earwax, Lyophilized Tissue Powder,Feed, Egg Yolk, Lyophilized Plant Powder, Lyophilized Egg Powder 100 mg
Honey, Nasal Mucus, Sputum 100 mg
Sludge, Soil 600 mg
Cell Adherent Cells, Animal Cell Lines 1*10^7 cells
E. Coli, Yeast Cells 1×10^10 cells
Small Amount of Fungal Mycelial Balls/Mycelium, Unicellular Algae (Cyanobacteria), Large Quantities of BacterialHyphae (sediment), Mucilaginous Protoplasmic Clusters (hyphae) 100 mg
Organelle Lysosomes, Mitochondria, Endoplasmic Reticulum 4×10^7 cells 
Exosomes, Extracellular Vesicles 2×10^9Particles
Special Sample Skin Tape or Patch 2 pieces
Test Strips 2 pieces
Swab 1 piece

Notes:
1. Not applicable for GC-MS.
2. The amounts shown in the table are for a single round of metabolite extraction. If the sample volume is sufficient, it is recommended to provide enough for two rounds of extraction. This way, if the first extraction does not yield ideal results, it can help avoid the delay caused by having to re-submit samples.
3. Appropriate for Untargeted Metabolomics, Untargeted Plus Metabolomics, TM Widely-Targeted Metabolomics, Quantitative Lipidomics, Energy Metabolism, Amino Acids, Tryptophan, and Short-Chain Fatty Acids studies.

Sample Requirements for Plant Metabolomics Sample

Sample Type Sample Recommended Sample Biological Replicate
Tissue Root, Stem, Leaf, Fruit, Flower, Bud, Node, Callus 600 mg Human≥30, Animal≥8, Plant≥3
Fruit Peel, Seed Coat 600 mg
Anther, Filament, Pollen, Style, Stigma, Embryo 1.2 g
Liquid Root Exudate 10 ml
Juice, Wine, Fermentation Broth 5 ml
Oils, Essential Oils, Honey, Nectar, Paste 500 μl
Herb Extract, Herb Decoction, Plant Tissue Fluid 500 μl
Cell Cultured Plant Cell 1×10^7 cells
Algae 300 mg
Solid Lyophilized Plant Powder 200 mg
Sludge, Soil 600 mg

Notes:
1. Not applicable for GC-MS.
2. For extracted metabolites, please advise on the recommended quantity for the extraction process.
3. Suitable for Untargeted Metabolomics, Widely-Targeted Metabolomics, Quantitative Lipidomics, Flavonoids, Carotenoid, Anthocyanin, Energy Metabolism, Amino Acids, Short-Chain Fatty Acids Metabolomics for Plants.
4. Recommended sampling approach:
– Collect samples from 3 or more individuals for each biological replicate.
– Ensure a minimum of 3 biological replicates per sample group.
– Example: Combine leaves from 3 individual plants as one replicate; repeat for 2 more replicates (involving 6 additional individual plants) to achieve 
3 biological replicates for one experimental group (e.g., Control).
– Repeat the process with 9 individual plants for the second experimental group (e.g., Treatment).

Project Workflow

Metabolomics research experimental procedures encompass sample collection and pre-processing, metabolite extraction, LC-MS data acquisition, metabolite annotation and identification through database searching, and bioinformatic analysis. These steps enable researchers to gain holistic insights into the metabolic state of a system.

At Novogene, we uphold the highest standards of precision and quality control at every step of the experimental process, ensuring consistent, reliable and high-quality data for your research.

Metabolite Classification Pie Chart

Visualization of the proportion of different metabolite categories based on their respective numbers.


PCA analysis of total samples

Convert a group of variables that may have correlation into a group of linear uncorrelated variables through orthogonal transformation


PLS-DA plot

Uses partial least squares regression to establish the relationship model between the relative quantitative value of metabolites and the sample category to realize the prediction of the sample category.


Volcano plot of differential metabolites

Volcano plot of differential metabolites


Lollipop chart of different metabolites

Show the up and down-regulation of the metabolites and the substances with large difference multiple changes.


Box plot of differential metabolite

Display the measurement statistics of the central trend and the measurement statistics of the dispersion.


Differential metabolite violin map

The distribution pattern of the same metabolite across different groups.


K-Means analysis of differential metabolites

The variation trend of metabolites across different groups.


Correlation analysis of different metabolites

The consistency of variation trends between pairs of metabolites, where red indicates a positive correlation and blue indicates a negative correlation.


Chord diagram of differential metabolites

Reflects the correlation and association between pairs of differential metabolites.


Z-score analysis

The relative abundance levels across different groups.


Cluster analysis of differential metabolites

Metabolites with similar or identical metabolic patterns are clustered together to infer their functions.


KEGG enrichment bubble diagram

The hypergeometric test algorithm is used to analyze the relevant metabolic pathways associated with differential metabolites between two groups.


KEGG enrichment pathway diagram


GSEA analysis


ROC curve Analysis of differential metabolite

Use the Area Under the Curve (AUC) to evaluate the sensitivity and specificity of metabolite detection.