Nevogene

Eukaryotic ncRNA Sequencing

Eukaryotic ncRNA-seq uses a next-generation sequencing approach to reveal the profile of non-coding RNAs at certain timepoints or under specific conditions. Sequencing data allows for the identification of present transcript isoforms and their abundance. Novogene's Eukaryotic ncRNA-seq service delivers high quality data, publication-ready analysis results, and personalized analysis pipeline for long non-coding RNA, circular RNA, and small RNA. With our whole transcriptome sequencing service, the potential transcriptional and regulatory networks among different types of RNAs are studied.

Why Novogene?

Extensive experience with over 3000 projects

<u> </u>	
M	
⊠	
2	

Industry-leading data quality guarantee

Ø • Ø • Ø

In house pipeline to meet different analysis requirement

Sample requirements

Service Type	Sample Type	Library type	Amount	Volume	Concentration	RNA Integrity Number (Agilent 2100)	Purity
lncRNA sequencing		rRNA removal & directional RNA library	≥ 500 ng	≥10 µL	≥ 50 ng/µL	≥ 6.5 (Animal); ≥ 6 (Plant & Fungus)	
circRNA sequencing		rRNA, linear RNA removal & directional RNA library	≥2µg	≥20 µL	≥ 50 ng/µL	≥ 7 (Animal); ≥ 6.5 (Plant & Fungus)	OD260/280 ≥ 2.0
small RNA sequencing	Total RNA	18~40 bp insert sRNA library	≥2µg	≥20 µL	≥ 50 ng/µL		OD260/230 ≥ 2.0 No degradation No contamination
Whole transcriptome sequencing		rRNA removal & directional RNA library. 18~40 bp insert sRNA library.	≥5µg	≥20 µL	≥ 20 ng/µL	≥ 7.5 (Animal); ≥ 7 (Plant & Fungus)	

Sequencing parameters

Service type	Platform	Read length	Recommended data amount	Data quality	Turnaround time
IncRNA sequencing			9-15Gb per sample		16 working days
circRNA sequencing	Illumina NovaSeq 6000	Pair-end 150	9-15Gb per sample	Q30 ≥ 85%	23 working days
sRNA sequencing			10~20M reads per sample		25 working days

Content of analysis

Service type	Analysis	
IncRNA	 IncRNA identification IncRNA target prediction Protein-protein interaction Alternative splicing SNP/InDel calling 	 Raw data quality control Mapping to reference genome Quantification
circRNA	circRNA identificationmiRNA binding site prediction	 Differential expression analysis Enrichment analysis (GO & KEGG)
circRNA	miRNA identificationmiRNA characterization	
WTS	Standard analysis: • lncRNA (lncRNA & mRNA) • circRNA • miRNA	 Free joint analysis: miRNA-mRNA miRNA-mRNA-lncRNA miRNA-mRNA-circRNA

Nøvogene

Integration of lncRNA-miRNA-mRNA reveals novel insights into oviposition regulation in honeybees.

Chen et al., 2017. PeerJ. DOI: 10.7717/peerj.3881.

Research objective:

To explore the expression changes of coding and non-coding RNA in the different oviposition phases of ovary activation in honeybees, as oviposition of the queen is crucial for the reproductive success and development of the colony.

Species: Honeybee (Apis mellifera)

Sample collection:

Honeybee ovary RNA from 4 phases (virgin queen, egg-laying queen, egg-laying inhibited queen, and egg-laying recovery queen).

Sequencing strategy:

PE150 & SE50 on Illumina NGS sequencer.

Data amount:

~16.7 Gb raw data per sample for lncRNA & mRNA; 150 M reads for sRNA.

Results (partial results shown)

A number of RNAs were found to be differentially expressed (DE) in the ovaries of honeybees from the 4 phases tested (table 1). Enrichment and functional annotation of the DE RNAs mapped to pathways related to oviposition, including hippo, MAPK, Wnt, notch and mTOR pathways.

Table 1. The number of DE coding and non-coding RNAs identified from each comparison.

Number of differentially expressed RNAs	Ovary activation (Egg-laying queens compared with virgin queens)		Ovipositi (Egg-laying compared with	ion inhibition inhibited queens ogg-laying queens)	Oviposition recovery (Egg-laying recovery queens compared with egg-laying inhibited queens)	
	Up-regulated	Down-regulated	Up-regulated	Down-regulated	Up-regulated	Down-regulated
mRNAs	3218	2263	266	72	256	241
IncRNAs	224	516	57	31	40	60
miRNAs	39	42	9	4	2	2

Nevogene

Figure 1 The reproductive associated lncRNA-miRNA-mRNA network.

For example, genes involved in tissue development, hormone biosynthesis and oocyte microtubule cytoskeleton polarisation were upregulated during the ovary activation phase and then downregulated during oviposition inhibition. Many of these DE genes were localised to a quantitative trait locus (QTL) on chromosome 11 previously identified for ovary size. An integrated analysis of the miRNA-lncRNA-mRNA network revealed a core set of genes that acted as bridges between miRNAs active the identified pathways (fig. 1).

Conclusions

This study revealed the importance of non-coding RNAs in the activation and regulation of oviposition in honey bees. It also revealed the interaction of mRNA and non-coding RNAs with each other, connecting the pathways in which they are involved. Candidate genes for oviposition were also identified.

Publications using Novogene's expertise

Nature, 2020.

Small RNA sequencing revealed various microRNAs involved in ethylene-triggered flowering process in Aechmea fasciata

Genes, 2020.

CircRNA Expression Profile during Yak Adipocyte Differentiation and Screen Potential circRNAs for Adipocyte Differentiation

Veterinary Microbiology, 2020.

Identification of functional IncRNAs in pseudorabies virus type II infected cells

BioRxiv, 2019.

An impact of HP1 γ on the fidelity of pre-mRNA splicing arises from its ability to bind RNA via intronic repeated sequences

Novogene (UK) Company Limited 25 Cambridge Science Park Cambridge, CB4 0FW United Kingdom www.novogene.com info@novogene-europe.com

For more details on our services and to download product flyers visit: om.novogene.com/flyers

