Cancer Risk Genetic Test Report

NovoFocusTM CR

Patient and Order Details	1
Results Summary	2
Interpretation	2
Recommendations	2
Summary of genomic alterations	3
Detailed Test Results	6
Test Details	12
Accreditations	12
Methodology	12
Gene list	12
Interpretation of genetic information	13
Statement on interpretation of variation	13
Risk management measures for cancer	14
Risk of developing cancer	14
Management Options for Risk Reduction	14
What Does this Result Mean for Family Members?	15

Content

Patient and Order Details

n I.D.: NKHS180158503-5A n Type/Size: Blood n Collection Date: 2019/06/26 n Received Date: 2019/06/28	Ordering Physician: Not Given Institution: Organization Name
n Collection Date: 2019/06/26	•
	<u>,</u>
n Received Date: 2019/06/28	
(Personal / Family Histor	ry Summary)
	````

Family Member	Cancer/Clinical Diagnosis	Age at Diagnosis
Unkown	Unkown	Unkown
Unkown	Unkown	Unkown
Unkown	Unkown	Unkown

# **Results Summary**

#### **Interpretation: Positive.**

#### Interpretation: Negative.

Gene	Variant	Classification	Zygosity	
NF1	NM_000267.3	Dathagania	Hatanamurata	
	c.499_502delTGTT (p.Cys167GlnfsX10)	Pathogenic	Heterozygote	
	NM_000051.3	Dathagania	Unterestante	
ATM	c.8814_8824del11 (p.Met2938IlefsX14)	Pathogenic	Heterozygote	
	NM_001128425.1	Lilaalaa madha aania	II	
MUTYH	c.925-2A>G	Likely pathogenic	Heterozygote	

The genetic test contains 106 hereditary cancer risk genes, and it is found that NF1 pathogenic variant, ATM pathogenic variant and MUTYH likely pathogenic variant, so your risk of developing cancer is higher than the general population.

This individual is heterozygous for a pathogenic variant in the NF1 gene, consistent with Neurofibromatosis type 1(NF1) syndrome. NF1 syndrome is associated with an increased risk of pheochromocytoma (1-13%), malignant peripheral nerve sheath tumors (6-16%), optic nerve gliomas (15%), breast cancer in women, gastrointestinal stromal tumors (GIST) and childhood leukemias.

This individual is also heterozygous for a pathogenic variant in ATM. Associated risks include an increased risk for breast cancer in women, and for colon, pancreatic, prostate, and other cancers in both women and men.

***

### Recommendations

- > Genetic counseling is recommended to discuss the implications of these results.
- Surveillance and treatment recommendations for Neurofibromatosis type 1 are summarized in Evans et al. (2017) and the Neurofibromatosis 1 article in GeneReviews (Friedman 2018). In addition, the "NCCN Guidelines for Genetic/Familial High-Risk Assessment: Breast and Ovarian" include management recommendations for individuals with pathogenic variants in NF1.
- ➤ The "NCCN Guidelines for Genetic/Familial High-Risk Assessment: Breast and Ovarian" include management recommendations for individuals with pathogenic variants in ATM.
- > ***
- First degree relatives have up to a 50% chance of also having the pathogenic variant(s) identified in this individual. Targeted testing for the pathogenic variant(s) is available for at-risk relatives.
- > For individuals and family members of reproductive age, assessment of the reproductive risk associated with

.

being a carrier of an ATM pathogenic variant is recommended.

If you would like to discuss these results in further detail, please consult your healthcare provider or genetic counselor.

# Summary of genomic alterations

No clinically significant mutation can be found.

							Allele		
No	Gene	Chr.	Exon /Intron	Transcript	cDNA_Change AA_Change	Zygosity	Frequency (1000 Genomes)	Mutation type	Classification
1	NF1	Chr17	exon	NM_000267 .3	c.499_502delT GTT p.Cys167Glnfs X10	Het	***	Frameshift	Pathogenic
2	ATM	***	***	NM_000051 .3	c.8814_8824del 11 p.Met2938Ilefs X14	Het	***	Frameshift	Pathogenic
3	MUTY H	Chr 1	intron10	NM_001128 425.1	c.925-2A>G	Het	0.00299521	Splicing	Likely pathogenic
4	KIF1B	Chr 1	exon22	NM_015074 .3	c.2173G>A p.V725M	Het	0.00019968	Missense	Uncertain significance
5	XPA	Chr 9	exon5	NM_000380 .3	c.571C>G p.L191V	Het	0.00019968 1	Missense	Uncertain significance
6	TP53	Chr 17	exon3	NM_000546 .5	c.91G>A p.V31I	Het	0.00179712	Missense	Uncertain significance
7	HOXB 13	Chr 17	exon2	NM_006361 .5	c.832G>T p.V278L	Het	0.00099840 3	Missense	Uncertain significance
8	ERCC2	Chr 19	exon10	NM_000400 .3	NM_ c.921C>G p.N307K	Het	-	Missense	Uncertain significance
9	MSH2	Chr 2	exon7	***	c.1255C>A p.Q419K	Het	0.00079872	Missense	Likely Benig
10	EXT2	Chr 11	exon5	***	c.995G>A p.R332H	Het	0.00079872 2	Missense	Likely Benig
11	MSH6	Chr 2	exon10	***	c.4068_407 1dupGATT	Het	-	Frameshift	Likely Benig

#### Summary of genomic alterations found in patient specimen

## NovoFocusTM CR Report

Specimen I.D.: Report Date: 2019-06-25

No	Gene	Chr.	Exon /Intron	Transcript	cDNA_Change AA_Change	Zygosity	Allele Frequency (1000 Genomes)	Mutation type	Classification
					p.K1358				
					Dfs*2				
12	MSH2	Chr 2	awam12	***	c.1886A>G	Het	0.00210640	Missense	Benign
12	MSH2	Chr 2	exon12		p.Q629R	Het	0.00219649		
13	FANCD	Chr 3		***	c.2141C>T	Het	- Missense	Missonso	Donian
15	2		exon23		p.P714L	пеі	-	Missense	Benign
14	PRSS1	Chr 7	exon4	***	c.508A>G	Het	0.00159744		Donian
14			ex0114		p.K170E	пеі	0.00139744	Missense	Benign
					c.181_189				
					dupGCAGCGC				
15	MSH3	Chr 5	exon1	***	CC	Hom	-	Frameshift	Benign
					p.P63_P64insA				
					AP				

#### Note:

 Analyze the gene variation by detecting the full exon of the gene in the list and intron regions near exon. Analysis and classify the variation by using the latest scientific research progress. As new scientific advances emerge, the classification and interpretation of some variations may change, and we will keep them up to date.

- 2. According to the guidelines of the American College of Medical Genetics and Genomics (ACMG), genetic mutations carried by individuals can be divided into the following five categories:
  - a. Pathogenic variant: There is abundant evidence that this is a high-risk pathogenic mutation.
  - b. Likely pathogenic variant: There is some evidence that this is a high-risk pathogenic mutation.
  - c. Uncertain significance variant: There is not enough evidence to classify the mutation into categories a, b, d or e.
  - d. Likely benign variant: There is some evidence that this is not a pathogenic mutation.
  - e. Benign variant: There is abundant evidence that this is not a pathogenic mutation.
- 3. "-": No information available from the medical literature or database.
- 4. Heterozygosis (Het): A condition in which two alleles at the same locus have different genotypes.
- 5. Homozygous (Hom): A condition in which two alleles at the same locus have the same genotype.
- 6. Nonsense mutation: When a change in a base causes a codon representing an amino acid to mutate into a termination codon, thereby causing premature termination of peptide chain synthesis.
- 7. Missense mutation: When the codon encoding one amino acid is replaced by a base, it becomes the codon encoding another amino acid, thus changing the amino acid type and sequence of the polypeptide chain.
- 8. Synonymous mutation: Nucleotide variations that do not cause amino acid changes.
- Frameshift mutation: In a normal DNA molecule, the increase or decrease of one or a few adjacent nucleotides causes a series of aberrant changes in the code that follow this position.
- 10. If you are carrying a variety of mutation types, please refer to the risk management measures corresponding to the most pathogenic mutation...
- 11. This table lists only the detailed information of the low frequency of 1000 genomes.

Analyzed and reported by:

Checked and approved by:

# **Detailed Test Results**

#### NM_000267.3(NF1):c.499_502delTGTT (p.Cys167GlnfsX10)

Gene	Transcript		cDNA Change	AA_Change	Zygosity	Classification
NF1	NM_000	0267.3	c.499_502delTGTT	p.Cys167GlnfsX10	Heterozygote	PATHOGENIC
		Varian	t description: This deletion of	f 4 nucleotides in NF1 is dei	noted c.499_502de	ITGTT at the cDNA level and
Clinical p.Cys167GlnfsX10 (C167QfsX10) at the protein level. The normal sequence						ne deleted bases in brackets, is
and	and TGTT[delTGTT]CAGA. The deletion causes a frameshift which changes a Cysteine to a Glutamine at c					
Variant	t	and cre	ates a premature stop codon at	position 10 of the new readi	ng frame.	
Interpr	etation					
		negativ in this impaire neurofi Varian truncati observe Lee 20 Pasmar display	e regulator of the Ras signal tr gene are responsible for tun ed and cell growth is uncontr bromatosis, monocytic leukem t analysis: This variant is p ion or nonsense-mediated mR1 ed in multiple individuals with 06, Bendova 2007, Brinckman at et al. (2011) identified this	ransduction pathway, which p norigenesis as a result of th olled. Mutations of NF1 ge nia, Watson syndrome, melan predicted to cause loss of the NA decay. This variant, preven a clinical diagnosis of Neu ann 2007, Wimmer 2007, S s variant in an individual v	promotes cell grow he tumor inhibition ne are associated oma, lung cancer, o normal protein fun viously published a urofibromatosis Typ Sabbagh 2013, Sc vhose malignant p	ein appears to function as a th and differentiation. Defects in function of NF1 protein is with many diseases including colorectal cancer, etc. inction through either protein is NF1 495delTTGT, has been be 1 (Osborn 1999, Ars 2003, haefer 2013, Uusitalo 2014). eripheral nerve sheath tumor we consider this variant to be

#### NM_000051.3(ATM): c.8814_8824del11 (p.Met2938IlefsX14)

.

Gene	Tra	nscript	cDNA Change	AA_Change	Zygosity	Classification	
ATM NM_000		000051.3	c.8814_8824del11	p.Met2938IlefsX14	Heterozygote	PATHOGENIC	
		Variant de	escription: This deletion	of 11 nucleotides in ATM is de	enoted c.8814_882	4del11 at the cDNA level	
Clinical and p.Met2938IlefsX14(M2938IfsX14) at the protein level.				14) at the protein level. The su	rrounding sequen	ce is TGAT[del11]AGGA.	
and		The deletion	on causes a frameshift, w	hich changes a Methionine to	an Isoleucine at c	codon 2938, and creates a	
Variant		premature	stop codon at position 14 o	of the new reading frame.			
Interpret	ation	Gene des	cription: The protein e	encoded by ATM(ATM serin	e/threonine kinas	e) gene belongs to the	
		PI3/PI4-kir	nase family. This protein	is an important cell cycle ch	neckpoint kinase	that phosphorylates many	
		checkpoint	proteins such as p53, CH	HK2, H2AX, MDM2, BRCA1	and so on, upon I	DNA stress. ATM encoded	
		protein is	an integration point of	different signal transduction	pathways which	are crucial for cellular	
		homeostasi	homeostasis. Mutations of ATM in cells bring about accumulation of DNA damage and genomic instability,				
leading to			tumorigenesis. Mutations	s of ATM gene are associated	with many canc	ers including endometrial	
		cancer, boy	vel cancer, stomach cancer	; etc.			
				- 7 -			

**Variant analysis:** This variant is predicted to cause loss of normal protein function through either protein truncation or nonsense-mediated mRNA decay. ATM c.8814_8824del11 has been observed in individuals with a personal history of Ataxia-Telangiectasia (Gilad 1998, Sandoval 1999, Cavalieri 2008, Prodosmo 2013). Therefore, in view of the current research progress, we consider this variant to be a pathogenic variant.

#### NM_001128425.1(MUTYH):c.934-2A>G

.

Gene	Transcript	cDNA Change	AA_Change	Zygosity	Classification					
MUTYH	NM_001128425.1	c.934-2A>G		Heterozygote	Uncertain Significance					
	Variant description:	Variant description: This variant is denoted MUTYH c.934-2A>G or IVS10-2A>G and consists of an A>G								
Clinical	nucleotide substitution	nucleotide substitution at the -2 position of intron 10 of the MUTYH gene. Using an alternate transcript, this								
and	variant has been repor	variant has been reported as MUTYH c.892-2A>G. This variant destroys a canonical splice acceptor site and is								
Variant	predicted to cause abn	predicted to cause abnormal gene splicing, leading to an abnormal message that is subject to nonsense-mediated								
Interpretation	mRNA decay or to an a	bnormal protein product.Tl	his variant is of a hete	erozygous type.						
	Gene description: M	UTYH is located at 1p34	.1 and encodes 546	amino acids. As	ssociated with hereditary					
	polyposis, it is an autos	somal recessive gene. The N	MUTYH protein is a	specific adenine tr	ansglucosylase located in					
	the nucleus and mitocl	nondria and involved in ba	se excision repair. If	the MUTYH pro	tein is inactivated, it will					
	easily lead to the trans-	version of G:C>A:T durir	ng replication, thereb	y promoting tumo	rigenesis. In patients with					
		polyposis (FAP) and attenu								
		MUTYH mutations were d		-						
		%-86% of MAP patients ar			med Y165C and G382D).					
	MUTYH heterozygous	variants increase the risk o	f breast cancer by 1.9	times.						
	Variant analysis. The				, the EnAC nonvelotion is					
		mutation is known as varia								
		was recorded as a causative erature that mutations in the			<i>,</i>					
	-	he MUTYH protein and los			- ·					
		I protein is mainly localize		-	-					
		on [PMID: 16199547]. The	-							
		h colorectal adenoma, colo		-						
		703316, 26824983], but the	-	-	-					
	-	view of the current researc								
		ation is heterozygous, your								
		r relatives participate in fur	-	-	-					
			-							

### NM_015074.3(KIF1B):c.2173G>A(p.V725M)

Gene	Tı	anscript	cDNA Change	AA_Change	Zygosity	Classification		
KIF1B	NM	[_015074.3	c.2173G>A	p.V725M	Heterozygote	Uncertain Significance		
		Variant descri	ption: The mutation is that the	2173th nucleotide l	ocated in exon 22	t is mutated from G to A,		
Clinical		resulting in th	e mutation of the 725th amin	o acid in the corre	sponding protein	sequence from proline to		
and		methionine. Th	is mutation belongs to a heterozy	gous missense mutat	ion.			
Variant								
Interpre	tation	Gene descript	ion: KIF1B, located at 1p36.22,	encodes 1816 amin	o acids, which end	codes a motor protein that		
		transports mitochondria and synaptic vesicle precursors, which are involved in vesicle-mediated transport and						
		megakaryocyte	development pathways. This ge	enetic variant can lea	ad to progressive r	neurogenic dystrophy. This		
		gene is also clo	sely related to pheochromocytom	a.				
		·	sis: The variation is known as va		<i>,</i>			
			This variation was not included in the ClinVar database. The algorithm developed for predicting the effect of					
missense muta			nutations on protein structure and function (SIFT, polyphen2, MutationAssessor) suggests that this					
mutation does			s not destroy the structure or function of the protein. Therefore, in view of the current research					
		progress, we co	onsider this variant to be uncerta	ain significance varia	nt.			

#### NM_000380.3(XPA):c.571C>G(p.L191V)

Gene	7	Franscript	cDNA Change	AA_Change	Zygosity	Classification				
XPA	N	M_000380.3	c.571C>G	p.L191V	Heterozygote	Uncertain Significance				
		Variant descri	ption: The mutation at	position 571 of exon 5	5 is mutated from C to G,	resulting in the mutation of				
Clinical		191th amino ac	id in the corresponding	protein sequence from	n leucine to proline, which	n is a heterozygous missense				
and		mutation.								
Variant										
Interpretat	ion	Gene descripti	ion: XPA is located at	9q22.33 and encodes	273 amino acids. This g	ene is a zinc finger protein				
		involved in DN	A excision repair and	is part of the NER (nu	cleic acid excision repair	r) complex. It is responsible				
		for repairing photochemical products induced by UV radiation. The encoded protein can be involved in the								
		pathway of nucleotide excision repair and transcription-coupled nucleotide excision repair (TC-NER). The								
		variation of XPA is closely related to the complementation group A of the xeroderma pigmentosum. The diseases								
		involved also ir	clude Xpa-related xero	derma pigmentosum.						
		Variant analysis: The variation is a known variation (rs562768588) and the frequency in the ExAC population is								
		0.00016. This variation is recorded as an uncertain significance mutation (Variation ID: 135458) in the ClinVar								
		database. The algorithm developed for predicting the effect of missense mutations on protein structure and								
		function (SIFT, polyphen2, MutationAssessor) suggests that the mutation does not destroy the structure or function								
		of the protein. Therefore, in view of the current research progress, we consider this variant to be an uncertain								
		significance variant.								

### NM_000546.5(TP53):c.91G>A(p.V31I)

Gene		Transcript	cDNA Change	AA_Change	Zygosity	Classification			
TP53	1	M_000546.5 c.91G>A p.V31I Heterozygote Uncertain Significance							
		Variant descript	ion: The 91th nucleotide of	the mutation loca	ted in exon 3 was mutat	ted from G to A, resulting in			
Clinical		the mutation of	the 31st amino acid in th	e corresponding	protein sequence from	proline to isoleucine. This			
and	and mutation belongs to a heterozygous missense mutation.								
Variant									
Interpretat	ion	Gene descriptio	n: Located at 17p13.1, end	coding 393 amino	acids, TP53 is a tumo	or suppressor gene that is a			
		negative regulate	or of cell growth cycle an	nd is involved in	important biological fi	unctions such as cell cycle			
		regulation, DNA	repair, cell differentiation,	and apoptosis. , its	mutation will lead to L	i-Fraumeni syndrome (LFS)			
		and Li-Fraumeni	like syndrome (LFL). It is	autosomal domina	nt. TP53 variant carrier	s are 50% cancer risk by the			
		age of 30 and ha	we a lifetime cancer risk o	f up to 90%. LFS	and LFL characterization	ion includes: soft tissue and			
		osteosarcoma, br	east cancer, brain cancer, a	nd adrenocortical	cancer. The study foun	d that a small percentage of			
		female breast car	ncer patients had TP53 muta	ations without BR	CA1 and BRCA2 mutat	tions. Other cancers, such as			
		pancreatic cancer	, may also occur when carr	rying TP53 mutation	ons. The incidence rate	is relatively low, accounting			
		for about 80% of	of children's adrenocortical	l carcinoma; 2%-	10% in juvenile brain	cancer patients; 2%-3% in			
		osteosarcoma pat	ients; The proportion in her	editary breast canc	er is less than 1%.				
		Variant analysis: The variation is known variation (rs201753350) and the frequency in the ExAC population is							
		0.00026. This variation is recorded as an uncertain significance mutation or possibly benign in the ClinVar							
		database (Variation ID: 127827). The algorithm developed for predicting the effect of missense mutations on							
		protein structure and function (SIFT, polyphen2, MutationAssessor) suggests that the mutation does not destroy							
		the structure or a	function of the protein. Th	is mutation is out	side the p53 transactiv	ation domain. In functional			
		studies, this variant showed moderately reduced cell proliferation inhibitory activity and transcriptional activity							
		against p21 (CDI	against p21 (CDKN1A) and MDM2 compared to wt-tp53 [PMID: 17690113]. This mutation has been reported in						
		several cancer patients, but there is no evidence of causality [PMID: 1565143, 20436704, 17690113, 27545002].							
		Therefore, in view	w of the current research pro	ogress, we conside	r this variant to be an un	certain significance variant.			

#### NM_006361.5(HOXB13):c.832G>T(p.V278L)

Gene	Transcript	cDNA Change	AA_Change	Zygosity	Classification				
HOXB13	NM_006361.5	c.832G>T	p.V278L	Heterozygote	Uncertain Significance				
	Variant description	Variant description: The mutation at position 832 on exon 2 was mutated from G to T, resulting in the mutation							
Clinical	of the 278th amino	of the 278th amino acid in the corresponding protein sequence from valine to leucine. This mutation belongs to a							
and	heterozygous misser	heterozygous missense mutation.							
Variant									
Interpretation	Gene description:	Gene description: THOXB13, located at 17q21.32, encodes 284 amino acids and encodes a transcription factor							
	that belongs to the l	that belongs to the homeobox gene family. HOXB13 plays a role in fetal skin development and skin regeneration.							
	This gene is closely	This gene is closely related to prostate cancer.							

## NovoFocusTM CR Report

**Variant analysis:** The variation is a known variation (rs200997384) and the frequency in the ExAC population is 0.00024. This variation is recorded as an uncertain significance mutation (Variation ID: 128038) in the ClinVar database. This mutation is located in the androgen receptor (AR) binding domain [PMID: 19917249]. The algorithm developed for predicting the effect of missense mutations on protein structure and function (SIFT, polyphen2, MutationAssessor) suggests that the mutation does not destroy the structure or function of the protein. This mutation was not observed in any breast or prostate cancer cases, but was observed in the control groups of two different studies [PMID: 22718234, 27424772]. After multiple comparisons, this mutation was not found to be statistically significantly associated with prostate cancer [PMID: 23555315]. Therefore, in view of the current research progress, we consider this variant to be an uncertain significance variant.

#### NM_000400.3(ERCC2):c.921C>G(p.N307K)

Gene	Transcript		cDNA Change	AA_Change	Zygosity	Classification		
ERCC2	NM	_000400.3	c.921C>G	p.N307K	Heterozygote	Uncertain Significance		
Variant description: The muta				position 921 on exon 1	0 was mutated from	m C to G, resulting in the mutation		
Clinical		of amino acid	307 in the correspond	in the corresponding protein sequence from asparagine to lysine. This mutation belongs to a				
and		heterozygous 1	missense mutation.					
Variant								
Interpretation Gene description: ERCC2 is located at 19q13.32 and encodes					ncodes 760 amino	acids. ERCC2 acts as a tumor		
	suppressor gene and encodes a DNA repair factor. The protein encoded by the ORF is invol					ORF is involved in the cleavage of		
		the transcribed nucleotides and is a member of the basal transcription factor BTF2/TFIIH, which is de						
		ATP. The melting enzyme activity belongs to the RAD3/XPD melting enzyme family. Diseases assoc						
		ERCC2 include lung cancer, colorectal cancer, and esophageal cancer.						
	Variant analysis: The mutation is a known variation (rs781205093), no				05093), no populat	tion frequency. The mutation is not		
included in the ClinVar database. Algorithm dev				lgorithm developed to	thm developed to predict the effect of missense mutations on protein			
		structure and	and function (SIFT, polyphen2, MutationAssessor). Both suggest that the mutation may disrupt the					
		structure or fu	function of the protein. Therefore, in view of the current research progress, we consider this variant to					
		be an uncertain	n significance variant.					

Please note that low penetrance and late age-of-onset variants that are associated with disease may be present at a low frequency in large population studies.

## **Test Details**

#### Accreditations

This test was conducted in a College of American Pathologists (CAP) accredited facility for next-generation sequencing (CAP Number: 9043632, AU-ID: 1759306). Its performance characteristics was determined in compliance to all applicable standards for the accreditation. This test has not been cleared or approved by the United States Food and Drug Administration (FDA). The FDA does not require this test to go through premarket FDA review. This test is used for clinical purposes. It should not be regarded as investigational or for research.

#### Methodology

For the screening of genetic cancer susceptibility, the next-generation sequencing technology is used to deeply sequence the genes known to be associated with the risk of hereditary cancer, to pinpoint the genetic variation, and to annotate the currently known mutations in conjunction with the latest research progress. This provides a comprehensive assessment of your risk of developing hereditary cancer and provides recommendations for living and medical examinations. The method can detect mutations including exon regions of genetic cancer-related genes and intron regions (including point mutations, small fragment insertions) near exon, excluding genomic structural variations (e.g. Large fragment and Loss of heterozygosity, replication and inversion rearrangement, large fragment and heterozygous insertion mutation (such as ALU-mediated insertion) and mutations in gene regulatory regions or deep intron regions.

AIP	ALK	APC	ATM	AXIN2	BAP1	BARD1
BLM	BMPR1A	BRCA1	BRCA2	BRIP1	BUB1	BUB1B
BUB3	CDC73	CDH1	CDK4	CDKN1B	CDKN2A	CEBPA
CHEK2	CYLD	DDB2	DICER1	DIS3L2	EGFR	ELAC2
EPCAM	ERCC2	ERCC3	ERCC4	ERCC5	EXT1	EXT2
FANCA	FANCB	FANCC	FANCD2	FANCE	FANCF	FANCG
FANCI	FANCL	FANCM	FH	FLCN	GATA2	HNF1A
HOXB13	KIF1B	KIT	MAX	MEN1	MET	MITF
MLH1	MLH3	MRE11	MSH2	MSH3	MSH6	MUTYH
NBN	NF1	NF2	NSD1	NTRK1	PALB2	PALLD
PDGFRA	PHOX2B	PMS1	PMS2	PRKAR1A	PRSS1	PTCH1
PTEN	RAD50	RAD51C	RAD51D	RB1	RET	RHBDF2
RNASEL	RUNX1	SDHA	SDHAF2	SDHB	SDHC	SDHD

## Gene list

## NovoFocusTM CR Report

Specimen I.D.: Report Date: 2019-06-25

SETD2	SLX4	SMAD4	SMARCB1	SRD5A2	STK11	SUFU
TMEM127	TP53	TSC1	TSC2	VHL	WT1	XPA
XPC						

#### Interpretation of genetic information

The genetic information interpretation rules refer to the relevant guidelines of the American College of Medical Genetics and Genomics (ACMG). The report focuses on mutation points that are currently clearly associated with the disease or that may be associated with the disease. The report will not include synonymous variations, non-splicing mutations in intron regions and common benign polymorphic variants unless relevant pathogenicity has been reported.. Relevant interpretations are based on our current understanding of disease and disease genes. The annotations for the mutations are referenced to public databases such as dbSNP, 1000Genome, HapMap and HGMD. It is recommended that the clinician or relevant medical professional perform a clinical phenotypic association with the subject based on the test results. As scientific research progresses, the classification and interpretation of partial variations may change and we will remain updated. If you have questions or if there are related diseases in your family members, please contact the inspection unit. The test results are laboratory test data, which are only used for the purpose of mutation screening, and do not represent the final diagnosis results, and be for clinical reference only.

#### Statement on interpretation of variation

The results of the mutation interpretation are based on the current cutting-edge scientific research and the variation information in the international public database. The public database contains the variation information of various populations. Therefore, the final pathogenic interpretation needs to be combined with the patient's clinical manifestations, family history, and a unique database of local populations. If the mutated information submitted in the public database is inaccurate or does not match, it does not rule out that the interpretation result will be wrong. Hereditary tumors are complex polygenic diseases. If the test results do not match the clinical manifestations, other tests can be considered for verification. The test results in the report provide reference for further clinical testing, prevention and monitoring of the subject.

# **Risk management measures for cancer**

### **Risk of developing cancer**

Since you have not detected a mutation in your disease, the risk of cancer is consistent with the general population, but your risk of developing cancer may increase for the following reasons:

- Other non-genetic factors (eg: environment).
- Other hereditary cancer syndromes.
- There are mutations that cannot be detected due to current detection techniques.

Note: Data from European and American people, for reference only.

In the light of you have a likely pathogenic variant in the MUTYH gene, your risk of developing cancer is significantly higher than the general population and it needs to be taken seriously. However, you don't need to be overly nervous. You can check the disease regularly and take other appropriate measures to prevent it. At the same time, you can achieve three early clinical measures: early detection, early diagnosis, early treatment, then you will have a high chance to prevent cancer from developing or curing.

Homozygous mutation							
Cancer	<b>Risk of the general population</b>						
Colorectal cancer	3.4%						
Small Intestine Cancer	To 80	4%	0.2%				
		Hotopogygous mutation					
Heterozygous mutation							
Cancer	Age (year)	<b>Risk of developing cancer</b>	<b>Risk of the general population</b>				
Colorectal cancer To 80		3.4%-10%	3.4%				

The list of disease risks caused by MUTYH mutations is as follows:

### **Management Options for Risk Reduction**

Your genetic test results show that your disease risk is consistent with the general population. In general, you do not need special precautions and measures. However, it is still recommended that you manage your risk based on your family history and medical history.

- Your healthcare provider can develop the medical management options that are right for you.
- Your health care provider can help you decide if you or your family need further genetic testing.

You can check your tumor regularly, maintain regular exercise, and maintain a balanced diet. At the same time, you need to do early clinical measures: early detection, early diagnosis, early treatment, then you will have a high probability To prevent or cure the disease.

Cancer risk management measures related to MUTYH mutation

There are a few things you can do to reduce your cancer risk. Discuss with your health care provider or clinician before deciding on a suitable plan.

Homozygous mutation							
Cancer	Measure	Age		Frequency			
Colorectal cancer	Colonoscopy	25-30 years		3-5/yeat			
	Colorectal surgery assessmentDensity and distributionand consultationaccording to adenoma		uncertain				
Small Intestine Cancer	Upper gastrointestinal	30-35years		3-5/yeat			
	endoscopy						
Heterozygous mutation							
Cancer	Measure Age Frequency						
Colorectal cancer	Colorectal cancer screening	50years According to individual circums		to individual circumstances			

Note: The above risk management recommendations are derived from the NCCN guidelines and leading-edge scientific research. Specific risk management measures should be carefully selected in conjunction with their own quality of life requirements and family history.

## What Does this Result Mean for Family Members?

• In most cases, your family members do not need to have a tumor genetic test, because no pathogenic or potentially pathogenic variants are detected in you.

• In some cases, it is recommended that relatives diagnosed with the tumor receive genetic testing in order to find more information about your family's genetic risk.

If you have any questions about your genetic test results, please contact the hotline and website.

Genetic variants are hereditary and the pathogenic variant are detected in your genes, so:

• Your family members (parents, children, brothers, and sisters) have a 50% chance of having the same variation.

- Your distant relatives (cousin, uncle, aunt etc.) may also have the same variation.
- In general, mutations will only be found in the parent (father or mother) with a family history of cancer.
- Relatives interested in genetic testing need to know your specific mutations. The cost of a single site detection is much less than the full cost of testing.
- If your relatives:

 $\star$  The pathogenic variant is detected, his/her risk of developing cancer will increase and you can benefit from proper medical management.

 $\star$  The pathogenic variant is not detected. His/her risk of developing cancer is the same as the general population. He/she can follow the general population screening guidelines.

.